BIQUANDLES WITH STRUCTURES RELATED TO VIRTUAL LINKS AND TWISTED LINKS
نویسندگان
چکیده
منابع مشابه
Twisted Alexander Invariants of Twisted Links
Let L = 1∪· · ·∪ d+1 be an oriented link in S3, and let L(q) be the d-component link 1 ∪· · ·∪ d regarded in the homology 3-sphere that results from performing 1/q-surgery on d+1. Results about the Alexander polynomial and twisted Alexander polynomials of L(q) corresponding to finite-image representations are obtained. The behavior of the invariants as q increases without bound is described.
متن کاملNumerical modeling of links behavior in eccentric bracings with dual vertical links
Configuration and geometry of bracing systems affect the seismic performance of structures significantly. Recently, the current authors have introduced a new configuration for eccentric bracing of structural frames that may be assumed as the combination of inverted Y-type and rotated K-type EBFs. The resulted braced frame is called EBF-DVL, consisting of two vertical links attached together by ...
متن کاملVirtual Joins With Nonexistent Links
Many approaches to multi-relational learning require the computation of database frequencies in the presence of nonexistent links. The corresponding ILP problem is to compute the number of groundings that satisfy a given conjunction of literals in a relational database, where one or more of the literals is negated. We present a fast new dynamic programming algorithm for this problem. The databa...
متن کاملVirtual Knots and Links
This paper is an introduction to the subject of virtual knot theory, combined with a discussion of some specific new theorems about virtual knots. The new results are as follows: We prove, using a 3-dimensional topology approach that if a connected sum of two virtual knots K1 and K2 is trivial, then so are both K1 and K2. We establish an algorithm, using Haken-Matveev technique, for recognizing...
متن کاملEuclidean Mahler Measure and Twisted Links
If the twist numbers of a collection of oriented alternating link diagrams are bounded, then the Alexander polynomials of the corresponding links have bounded euclidean Mahler measure (see Definition 1.2). The converse assertion does not hold. Similarly, if a collection of oriented link diagrams, not necessarily alternating, have bounded twist numbers, then both the Jones polynomials and a para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2012
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216512400068